CoolData blog

3 October 2016

Grad class size: predictive of giving, but a reality check, too

 

The idea came up in a conversation recently: Certain decades, it seems, produced graduates that have reduced levels of alumni engagement and lower participation rates in the Annual Fund. Can we hope they will start giving when they get older, like alumni who have gone before? Or is this depressed engagement a product of their student experience — a more or less permanent condition that will keep them from ever volunteering or giving?

 

The answer is not perfectly clear, but what I have found with a bit of analysis can only add to the concern we all have about the end of “business as usual.”

 

For almost all universities, enrolments have risen dramatically over the decades since the end of the second World War. As undergraduate class sizes ballooned, metrics such as the student-professor ratio emerged as important indicators of quality of education. It occurred to me to calculate the size of each grad-year cohort and include it as a variable in predictive models. For a student who graduated in 1930, that figure could be 500. For someone who graduated in 1995, it might be 3,000. (If you do this, remember not to exclude now-deceased alumni in your count.) A rough generalization about the conditions under which a person received their degree, to be sure, but it was easy to query the database for this, and easy to test.

 

I pulled lifetime giving for 130,000 living alumni and log-transformed it before checking for a correlation with the size of graduating class. (The transformation being log of “lifetime giving plus 1.”) It turned out that lifetime giving has a strong inverse correlation with the size of an alum’s grad class, for that alum’s most recent degree. (r = -0.338)

 

This is not surprising. The larger the graduating class, the younger the alum. Nothing is as strongly correlated with lifetime giving as age, therefore much of the effect I was seeing was probably due to age. (The Pearson correlation of LTG and age was 0.395.)

 

Indeed, in a multiple linear regression of age on lifetime giving (log-transformed), adding “grad-class size” as a predictor variable does not improve model fit. The two predictors are not independent of each other: For age and grad-class size, r = -0.828!

 

I wasn’t ready to give up on the idea, though. I considered my own graduation from university, and all the convocations I had attended in the past as an Advancement employee or a family member of a graduate. The room (or arena, as the case may be) was full of grads from a whole host of degree programs, most of whom had never met each other or attended any class in common. Enrolment growth has been far from even across faculties (or colleges or schools); the student experience in terms of class size and one-on-one access to professors probably differs greatly from program to program. At most universities, Arts or Science faculties have exploded in size, while Medicine or Law have probably not.

 

With that in mind, I calculated grad-class size differently, counting the size of each alum’s graduating cohort at the faculty (college) level. The correlation of this more granular count of grads with lifetime giving was not as negative (r = -0.283), but at the same time, it was less tied to age.

 

This time, when I created a regression of age on lifetime giving and then added grad-class size at the faculty level, both predictors were significant. Grad class size gave a good boost to adjusted R squared.

 

I seemed to be on to something, so I pushed it farther. Knowing that an undergrad’s experience is very different from that of a graduate student, I added “Number of Degrees” as a variable after age, and before grad-class size. All three predictors were significant and all led to improvements in model fit.

 

Still on the trail of how class size might affect student experience, and alumni affinity and giving thereafter, I got more specific in my query, counting the number of graduates in each alum’s year of graduation and degree program. This variable was even less conflated with age, but despite that, it failed to provide any additional explanation for the variation in lifetime giving. There may be other forms of counts that are more predictive, but the best I found was size of grad class at the faculty/college level.

 

If I were asked to speculate about the underlying cause, the narrative I’d come up with is that enrolments grew dramatically not only because there were more young people, but because universities in North America were attracting students who increasingly felt that a university degree was a rite of passage required for success in the job market. The relationship of student to university was changing, from that of a close-knit club of scholars, many of whom felt immensely grateful for the opportunity, to a much larger, less cohesive population with a more transactional view of their relationship with alma mater.

 

That attitude (“I paid x dollars for my piece of paper and so our business here is done”), and not so much the increasing numbers of students they shared the lecture halls with, could account for drops in philanthropic support. What that means for Annual Fund is that we can’t bank on the likelihood that a majority of alumni will become nostalgic when they reach the magic age of 50 or 60 and open their wallets as a consequence. Everything’s different now.

 

I don’t imagine this is news to anyone who’s been paying attention. But it’s interesting to see how this reality is reflected in the data. And it’s in the data that we will be able to find the alumni for whom university was not just a transaction. Our task today is not just to identify that valuable minority, but to understand them, communicate with them intelligently, connect with their interests and passions, and engage them in meaningful interactions with the institution.

 

Advertisement

9 October 2015

Ready for a sobering look at your last five years of alumni giving?

Guest post by Peter B. Wylie and John Sammis

  

Download this discussion paper here: Sobering Look at last 5 fiscal years of alumni giving

 

My good friends Wylie and Sammis are at it again, digging into the data to ask some hard questions.

 

This time, their analysis shines a light on a concerning fact about higher education fundraising: A small group of donors from the past are responsible for the lion’s share of recent giving.

 

My first reaction on reading this paper was, well, that looks about right. A school’s best current donors have probably been donors for quite some time, and alumni participation is in decline all over North America. So?

 

The “so” is that we talk about new donor acquisition but are we really investing in it? Do we have any clue who’s going to replace those donors from the past and address the fact that our fundraising programs are leaky boats taking on water? Is there a future in focusing nearly exclusively on current loyal donors? (Answer: Sure, if loyal donors are immortal.)

 

A good start would be for you to get a handle on the situation at your institution by looking at your data as Wylie and Sammis have done for the schools in their discussion paper. Download it here: Sobering Look at last 5 fiscal years of alumni giving.

 

28 June 2015

Data mining in the archives

Filed under: Data, Predictor variables — Tags: , , , — kevinmacdonell @ 6:24 pm

 

When I was a student, I worked in a university archives to earn a little money. I spent many hours penciling consecutive index numbers onto acid-free paper folders, on the ultra-quiet top floor of the library. It was as dull a job as one can imagine.

 

Today’s post is not about that kind of archive. I’m talking about database archive views, also called snapshots. They’re useful for reporting and business intelligence, but they can also play a role in predictive modelling.

 

What is an archive view?

 

Think of a basic stat such as “number of living alumni”. This number changes constantly as new alumni join the fold and others are identified as deceased. A straightforward query will tell you how many living alumni there are, but that number will be out of date tomorrow. What if someone asks you how many living alumni you had a year ago? Then it’s necessary to take grad dates and death dates into account in order to generate an estimate. Or, you look the number up in previously-reported statistics.

 

A database archive view makes such reporting relatively easy by preserving the exact status of a record at regular points in time. The ideal archive is a materialized view in a data warehouse. On a given schedule (yearly, quarterly, or even monthly), an automated process adds fresh rows to an archive table that keeps getting longer and longer. You’re likely reliant on central IT services to set it up.

 

“Number of living alumni” is an important denominator for such key ratios as the percentage of alumni for whom you have contact information (mail, phone, email) and participation rates (the proportion of alumni who give). Every gift is entered as an individual transaction record with a specific date, which enables reporting on historical giving activity. This tends not to be true of contact information. Even though mailing addresses may be added one after another, without overwriting older addresses, the key piece of information is whether the address is coded ‘valid’ or ‘invalid’. This changes all the time, and your database may not preserve a history of those changes. Contact information records may have “To” and “From” dates associated with them, but your query will need to do a lot of relative-date calculations to determine if someone was both alive and had a valid address for any given point in time in the past.

 

An archive table obviates the need for this complex logic, and ours looks like the example below. There’s the unique ID of each individual, the archive date, and a series of binary indicator variables — ‘1’ for “yes, this data is present” or ‘0’ for “this data is absent”.

 

archive

 

Here we see three individuals and how their data has changed over three months in 2015. This is sorted by ID rather than by the order in which the records were added to the archive, so that you can see the journey each person has taken in that time:

 

  • A00001 had no valid email in the database in February and March, but we obtained it in time for the April 1 snapshot.
  • A00002 had no contact information at all until just before March, when a phone append supplied us with a new number. The number proved to be invalid, however, and when we coded it as such in the database, the indicator reverted to zero.
  • A00003 appeared in our data in February and March, but that person was coded deceased in the database before April 1, and was excluded from the April snapshot.

 

That last bullet point is important. Once someone has died, continuing to include them as a row in the archive every month would be a waste of resources. In your reporting software, a simple count of records by archive date will give you the number of living alumni. A simple count of ‘Address Indicator’ will give you the number of alumni with valid addresses. Dividing the number of valid addresses by the number of living alumni (and multiplying by 100) will give you the percentage of living alumni that are addressable for that month. (Reporting software such as Tableau will make very quick work of all this.)

 

Because an archive view preserves changing statuses over time at the level of the individual constituent, it can be used for reporting trends along any slice you choose (age bracket, geography, school, etc.), and can play a role in staff activity/performance reporting and alumni engagement scoring.

 

But enough about archive views themselves. Let’s talk about using them for predictive modelling.

 

In the archive example above, you see a bunch of 0/1 indicator variables. Indicator variables are common in predictive modelling. For example, “Mailing address present” can have one of two states: Present or not present. It’s binary. A frequency breakdown of my data at this point in time looks like this (in Data Desk):

 

freq1

 

About 78% of living alumni have a valid address in the database today — the records with an address indicator of ‘1’. As you might expect, alumni with a good address are more likely to have given than alumni without, and they have much higher lifetime giving on average. In the models I build to predict likelihood to give (and give at higher levels), I almost always make use of this association between contact information and giving.

 

But what about using the archive view data instead? The ‘Address Indicator’ variable breakdown above shows me the current situation, but the archive view adds depth by going back in time. Our own archive has been taking monthly snapshots since December of last year — seven distinct points in time. Summing on “Address Indicator” for each ID shows that large numbers of alumni have either never had a valid address during that time (0 out of 7 months), or always did (7 out of 7). The rest had a change of status during the period, and therefore fall between 0 and 7:

 

freq2

 

A few hundred alumni (387) had a valid address in one out of seven months, 143 had a valid address in two out of seven — and so on. Our archive is still very young; only about 1% of alumni have a count that is not 0 or 7. A year from now, we can expect to see far more constituents populating the middle ground.

 

What is most interesting to me is an apparent relationship between “number of months with valid address” (x-axis) and average lifetime giving (y-axis), even with the relative scarcity of data:

 

chart1

 

My real question, of course, is whether these summed, continuous indicators really make much of a difference in a model over simply using the more familiar binary variables. The answer is “not yet — but someday.” As I noted earlier, only about 1% of living alumni have changed status in the past seven months, so even though this relationship seems linear, the numbers aren’t there to influence the strength of correlation. The Pearson correlation for “Address Indicator” (0/1) and “Lifetime Giving” is 0.186, which is identical to the Pearson correlation for “Address Count” (0 to 7) and “Lifetime Giving.” For all other variables except one, the archive counts have only very slightly higher correlations with Lifetime Giving than the straight indicator variables. (Email is slightly lower.)

 

It’s early days yet. All I can say is that there is potential. Have a look at this pair of regression analyses, both using Lifetime Giving (log-transformed) as the dependent variable. (Click on image for larger view.) In the window on the left, all the independent variables are the regular binary indicator variables. On the right, the independent variables are counts from our archive view. The difference in R-squared from one model to the other is very slight, but headed in the right direction: From 12.7% to 13.0%.

 

regressions

 

Looking back on my student days, I cannot deny that I enjoyed even the quiet, dull hours spent in the university archives. Fortunately, though, and due in no small part to cool data like this, my work since then has been a lot more interesting. Stay tuned for more from our archives.

 

11 May 2015

A new way to look at alumni web survey data

Filed under: Alumni, Surveying, Vendors — Tags: , , , , — kevinmacdonell @ 7:38 pm

Guest post by Peter B. Wylie, with John Sammis

 

Click to download the PDF file of this discussion paper: A New Way to Look at Survey Data

 

Web-based surveys of alumni are useful for all sorts of reasons. If you go to the extra trouble of doing some analysis — or push your survey vendor to supply it — you can derive useful insights that could add huge value to your investment in surveying.

 

This discussion paper by Peter B. Wylie and John Sammis demonstrates a few of the insights that emerge by matching up survey data with some of the plentiful data you have on alums who respond to your survey, as well as those who don’t.

 

Neither alumni survey vendors nor their higher education clients are doing much work in this area. But as Peter writes, “None of us in advancement can do too much of this kind of analysis.”

 

Download: A New Way to Look at Survey Data

 

 

21 March 2013

The lopsided nature of alumni giving

Filed under: Alumni, Major Giving, Peter Wylie — Tags: , , , — kevinmacdonell @ 6:06 am

Guest post by Peter B. Wylie

(Printer-friendly PDF download of this post available here: Lopsided Nature of Alum Giving – Wylie)

Eight years ago I wrote a piece called Sports, Fund Raising, and the 80/20 Rule”. It had to do with how most alumni giving in higher education comes from a very small group of former students. Nobody was shocked or awed by the article. The sotto voce response seemed to be, “Thanks, Pete. We got that. Tell us something we don’t know.” That’s okay. It’s like my jokes. A lot of ’em don’t get more than a polite laugh; some get stone silence.

Anyway, time passed and I started working closely with John Sammis. Just about every week we’d look at a new alumni database, and over and over, we’d see the same thing. The top one percent of alumni givers had donated more than the other ninety-nine percent.

Finally, I decided to take a closer look at the lifetime giving data from seven schools that I thought covered a wide spectrum of higher education institutions in North America. Once again, I saw this huge lopsided phenomenon where a small, small group of alums were accounting for a whopping portion of the giving in each school. That’s when I went ahead and put this piece together.

What makes this one any different from the previous piece? For one thing, I think it gives you a more granular look at the lopsidedness, sort of like Google Maps allows you to really focus in on the names of tiny streets in a huge city. But more importantly, for this one I asked several people in advancement whose opinions I respect to comment on the data. After I show you that data, I’ll summarize some of what they had to say, and I’ll add in some thoughts of my own. After that, if you have a chance, I’d love to hear what you think. (Commenting on this blog has been turned off, but feel free to send an email to kevin.macdonell@gmail.com.)

The Data

I mentioned above that I looked at data from seven schools. After some agonizing, I decided I would end up putting you to sleep if I showed you all seven. So I chopped it down to four. Believe me, four is enough to make the point.

Here’s how I’ve laid out the data:

  • For each of the four schools I ranked only the alumni givers (no other constituencies) into deciles (10 groups), centiles (100 groups), and milliles (1,000 groups), by total lifetime hard credit giving. (There is actually no such word as “milliles” in English; I have borrowed from the French.)
  • In the first table in each set I’ve included all the givers. In the second table I’ve included only the top ten percent of givers. And in the third table I’ve included only the top one percent of givers. (The chart following the third table graphically conveys some of the information included in the third table.)

To make sure all this is clear, let’s go through the data for School A. Take a look at Table 1. It shows the lifetime giving for all alumni donors at the school divided into ten equal size groups called deciles. Notice that the alums in decile 10 account for over 95% of that giving. Conversely, the alums in decile 1 account for two tenths of one percent of the giving.

Table 1: Amount and Percentage of Total Lifetime Giving in School A for all Alumni by Giving Decile

table1

Moving on to Table 2. Here we’re looking at only the top decile of alumni givers divided into one percent groups. What jumps out from this table is that the top one percent of all givers account for more than 80% of alumni lifetime giving. That’s five times as much as the remaining 99% of alumni givers.

Table 2: Amount and Percentage of Total Lifetime Giving at School A for Top Ten Percent of Alumni Donors

table2

If that’s not lopsided enough for you, let’s look at Table 3 where the top one percent of alumni givers is divided up into what I’ve called milliles. That is, tenth of a percent groups. And lo and behold, the top one tenth of one percent of alumni donors account for more than 60% of alumni lifetime giving. Figure 1 shows the same information in a bit more dramatic way than does the table.

Table 3: Amount and Percentage of Total Lifetime Giving at School A for Top One Percent of Alumni Donors

table3

figure1

What I’d recommend is that you go through the same kinds of tables and charts laid out below for Schools B, C, and D. Go as fast or as slowly as you’d like. Being somewhat impatient, I would focus on Figures 2-4. I think that’s where the real punch in these data resides.

Table 4: Amount and Percentage of Total Lifetime Giving in School B for all Alumni by Giving Decile

table4

Table 5: Amount and Percentage of Total Lifetime Giving at School B for Top Ten Percent of Alumni Donors

table5

Table 6: Amount and Percentage of Total Lifetime Giving at School B for Top One Percent of Alumni Donors

table6

figure2

Table 7: Amount and Percentage of Total Lifetime Giving in School C for all Alumni by Giving Decile

table7

Table 8: Amount and Percentage of Total Lifetime Giving at School C for Top Ten Percent of Alumni Donors

table8

Table 9: Amount and Percentage of Total Lifetime Giving at School C for Top One Percent of Alumni Donors

table9

figure3

Table 10: Amount and Percentage of Total Lifetime Giving in School D for all Alumni by Giving Decile

table10

Table 11: Amount and Percentage of Total Lifetime Giving at School D for Top Ten Percent of Alumni Donors

table11

Table 12: Amount and Percentage of Total Lifetime Giving at School D for Top One Percent of Alumni Donors

table12

figure4

When I boil down to its essence what you’ve just looked at for these three schools, here’s what I see:

  • In School B over the half of the total giving is accounted for by three tenths of one percent of the givers.
  • In School C we have pretty much the same situation as we have in School B.
  • In School D over 60% of the total giving is accounted for by two tenths of one percent of the givers.

What Some People in Advancement have to Say about All This

Over the years I’ve gotten to know a number of thoughtful/idea-oriented folks in advancement. I asked several of them to comment on the data you’ve just seen. To protect the feelings of the people I didn’t ask, I’ll keep the commenters anonymous. They know who they are, and they know how much I appreciate their input.

Here are a few of the many helpful observations they made:

Most of the big money in campaigns and other advancement efforts does not come from alumni. I’m a bit embarrassed to admit that I had forgotten this fact. CASE puts out plenty of literature that confirms this. It is “friends” who carry the big load in higher education fundraising. At least two of the commenters pointed out that we could look at that fact as a sad commentary on the hundreds and hundreds of thousands of alums who give little or nothing to their alma maters. However, both felt it was better to look at these meager givers as an untapped resource that we have to do a better job of reaching.

The data we see here reflect the distribution of wealth in society. The commenter said, “There simply are very few people who have large amounts of disposable wealth and a whole lot of hard working folks who are just trying to participate in making a difference.” I like this comment; it jibes with my sense of the reality out there.

“It is easier (and more comfortable) to work with donors rather than prospective donors.” The commenter went on to say: “The wealthier the constituency the more you can get away with this approach because you have enough people who can make mega-gifts and that enables you to avoid building the middle of the gift pyramid.” This is very consistent with what some other commenters had to say about donors in the middle of the pyramid — donors who don’t get enough attention from the major giving folks in advancement.

Most people in advancement ARE aware of the lopsidedness. All of the commenters said they felt people in advancement were well aware of the lopsided phenomenon, perhaps not to the level of granularity displayed in this piece. But well aware, nonetheless.

What you see in this piece underestimates the skew because it doesn’t include non-givers. I was hoping that none of the commenters would bring up this fact because I had not (and still have not) come up with a clear, simple way to convey what the commenter had pointed out. But let’s see if I can give you an example. Look at Figure 4. It shows that one tenth of one percent of alumni givers account for over 48% of total alumni giving. However, let’s imagine that half of the solicitable alumni in this school have given nothing at all. Okay, if we now double the base to include all alums, not just alum givers, then what happens to the percentage size of that top one tenth of one percent of givers? It’s no longer one tenth of one percent; it’s now one twentieth of one percent. If you’re confused, let’s ask someone else reading this thing to explain it. I’m spinning my wheels.

One More Thought from Me

But here’s a thought that I’ve had for a long time. When I look at the incredible skewness that we see in the top one percent of alumni donors, I say, “WHY?!” Is the difference among the top millile and the bottom millile in that top one percent simply a function of capacity to give? Maybe it is, but I’d like to know. And then I say, call me crazy, LET’S FIND OUT! Not with some online survey. That won’t cut it. Let’s hire a first rate survey research team to go out and interview these folks (we’re not talking a lot of people here). Would that cost some money to go out and get these answers? Yes, and it would be worth every penny of it. The potential funding sources I’ve talked to yawn at the idea. But I’ll certainly never let go of it.

As always, let us know what you think.

6 June 2012

How you measure alumni engagement is up to you

Filed under: Alumni, Best practices, Vendors — Tags: , , , — kevinmacdonell @ 8:02 am

There’s been some back-and-forth on one of the listservs about the “correct” way to measure and score alumni engagement. An emphasis on scientific rigor is being pressed for by one vendor who claims to specialize in rigor. The emphasis is misplaced.

No doubt there are sophisticated ways of measuring engagement that I know nothing about, but the question I can’t get beyond is, how do you define “engagement”? How do you make it measurable so that one method applies everywhere? I think that’s a challenging proposition, one that limits any claim to “correctness” of method. This is the main reason that I avoid writing about measuring engagement — it sounds analytical, but inevitably it rests on some messy, intuitive assumptions.

The closest I’ve ever seen anyone come is Engagement Analysis Inc., a firm based here in Canada. They have a carefully chosen set of engagement-related survey questions which are held constant from school to school. The questions are grouped in various categories or “drivers” of engagement according to how closely related (statistically) the responses tend to be to each other. Although I have issues with alumni surveys and the dangers involved in interpreting the results, I found EA’s approach fascinating in terms of gathering and comparing data on alumni attitudes.

(Disclaimer: My former employer was once a client of this firm’s but I have no other association with them. Other vendors do similar and very fine work, of course. I can think of a few, but haven’t actually worked with them, so I will not offer an opinion.)

Some vendors may make claims of being scientific or analytically correct, but the only requirement of quantifying engagement is that it be reasonable, and (if you are benchmarking against other schools) consistent from school to school. In general, if you want to benchmark, then engage a vendor if you want to do it right, because it’s not easily done.

But if you want to benchmark against yourself (that is, over time), don’t be intimidated by anyone telling you your method isn’t good enough. Just do your own thing. Survey if you like, but call first upon the real, measurable activities that your alumni participate in. There is no single right way, so find out what others have done. One institution will give more weight to reunion attendance than to showing up for a pub night, while another will weigh all event attendance equally. Another will ditch event attendance altogether in favour of volunteer activity, or some other indicator.

Can anyone say definitively that any of these approaches are wrong? I don’t think so — they may be just right for the school doing the measuring. Many schools (mine included) assign fairly arbitrary weights to engagement indicators based on intuition and experience. I can’t find fault with that, simply because “engagement” is not a quantity. It’s not directly measurable, so we have to use proxies which ARE measurable. Other schools measure the degree of association (correlation) between certain activities and alumni giving, and base their weights on that, which is smart. But it’s all the same to me in the end, because ‘giving’ is just another proxy for the freely interpretable quality of “engagement.”

Think of devising a “love score” to rank people’s marriages in terms of the strength of the pair bond. A hundred analysts would head off in a hundred different directions at Step 1: Defining “love”. That doesn’t mean the exercise is useless or uninteresting, it just means that certain claims have to be taken with a grain of salt.

We all have plenty of leeway to chose the proxies that work for us, and I’ve seen a number of good examples from various schools. I can’t say one is better than another. If you do a good job measuring the proxies from one year to the next, you should be able to learn something from the relative rises and falls in engagement scores over time and compared between different groups of alumni.

Are there more rigorous approaches? Yes, probably. Should that stop you from doing your own thing? Never!

Older Posts »

Create a free website or blog at WordPress.com.